Phase III Trial Comparing AC-T with AC-TH and with TCH in the Adjuvant Treatment of HER2 positive Early Breast Cancer Patients: Second Interim Efficacy Analysis

Study sponsored by Sanofi-Aventis
Support from Genentech
After the presentation these slides will be available at:

www.sabcs.org
www.cirg.org
The HER2 Alteration

Global Project Coordinator

Valerie Bee
BCIRG 006

4 x AC
60/600 mg/m²
4 x Docetaxel
100 mg/m²

AC→T

4 x AC
60/600 mg/m²
4 x Docetaxel
100 mg/m²

AC→TH

6 x Docetaxel and Carboplatin
75 mg/m²
AUC 6

TCH

1 Year Trastuzumab

Her 2+
(Central FISH)

N+
or high
risk N-

N=3,222

Stratified by Nodes and Hormonal Receptor Status

Slamon D., SABCS 2006
Endpoints

Primary
→ Disease-free Survival

Secondary
→ Overall Survival
→ Toxicity
→ Pathologic & Molecular Markers
Patient characteristics

<table>
<thead>
<tr>
<th>Randomized (n=3,222)</th>
<th>AC-T n=1,073</th>
<th>AC-TH n=1,074</th>
<th>TCH n=1,075</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Age < 50 years</td>
<td>52</td>
<td>52</td>
<td>54</td>
</tr>
<tr>
<td>KPS = 100</td>
<td>80</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>Mastectomy</td>
<td>60</td>
<td>63</td>
<td>60</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>63</td>
<td>61</td>
<td>63</td>
</tr>
<tr>
<td>Hormonotherapy</td>
<td>50</td>
<td>51</td>
<td>51</td>
</tr>
</tbody>
</table>

Enrollment: April 2001 to March 2004
Tumor Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Randomized (n=3,222)</th>
<th>AC-T n=1,073</th>
<th>AC-TH n=1,074</th>
<th>TCH n=1,075</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodes +</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>0</td>
<td>29%</td>
<td>29%</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>1 – 3</td>
<td>38%</td>
<td>38%</td>
<td>39%</td>
<td></td>
</tr>
<tr>
<td>4 – 10</td>
<td>22%</td>
<td>24%</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td>> 10</td>
<td>11%</td>
<td>9%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Tumor Size (cm)</td>
<td>%</td>
<td>%</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>(\leq 2)</td>
<td>41%</td>
<td>38%</td>
<td>40%</td>
<td></td>
</tr>
<tr>
<td>> 2 and (\leq 5)</td>
<td>53%</td>
<td>55%</td>
<td>54%</td>
<td></td>
</tr>
<tr>
<td>> 5</td>
<td>6%</td>
<td>7%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>ER and/or PR +</td>
<td>54%</td>
<td>54%</td>
<td>54%</td>
<td></td>
</tr>
</tbody>
</table>
Crossover

After the trastuzumab efficacy results were announced in April ’05, to date:

- A total of 17 patients (1.6%) of 1,073 randomized to the ITT control arm (AC-T) crossed-over to receive trastuzumab
- Leaving 98.4% of the control arm enrollment intact for subsequent DFS, OS and safety comparison analyses
First/Second Interim Efficacy Analysis
(cutoff date June 30, 2005/November 01, 2006)

→ Median follow-up time = 23/36 months
→ 322/462 DFS Events
 ✓ Breast Cancer Relapse
 ✓ Second Primary Malignancy
 ✓ Death
→ 84/185 Deaths
Disease Free Survival – 1st interim analysis

Patients Events
- 1073 147 AC->T
- 1074 77 AC->TH
- 1075 98 TCH

HR (AC->TH vs AC->T) = 0.49 [0.37;0.65] P<0.0001
HR (TCH vs AC->T) = 0.61 [0.47;0.79] P=0.0002
Disease Free Survival - 2nd Interim Analysis

Absolute DFS benefits (from years 2 to 4):
AC→TH vs AC→T: 6%
TCH vs AC→T: 5%

HR (AC→TH vs AC→T) = 0.61 [0.48;0.76] P<0.0001
HR (TCH vs AC→T) = 0.67 [0.54;0.83] P=0.0003

AC® TH vs AC® T: 6%
TCH vs AC→T: 5%
p-values at Interim Efficacy Analyses

<table>
<thead>
<tr>
<th></th>
<th>AC-T n=1,073</th>
<th>AC-TH n=1,074</th>
<th>TCH n=1,075</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with event</td>
<td>147 / 192</td>
<td>77 / 128</td>
<td>98 / 142</td>
</tr>
<tr>
<td>at 1<sup>st</sup> interim analysis</td>
<td>p=0.0000001 / 0.000011</td>
<td>p=0.00015 / 0.00028</td>
<td>p=0.16 / 0.42</td>
</tr>
<tr>
<td>at 2<sup>nd</sup> interim analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastatic events</td>
<td>113 / 143</td>
<td>52 / 93</td>
<td>67 / 98</td>
</tr>
</tbody>
</table>

HR at 1st interim analysis
- TCH: 0.61
- AC-TH: 0.49

HR at 2nd interim analysis
- TCH: 0.67
- AC-TH: 0.61

BCIRG 006
Slamon D., SABCS 2006
Overall Survival – 2nd Interim Analysis

HR (AC->TH vs AC->T) = 0.59 [0.42;0.85] P=0.004

HR (TCH vs AC->T) = 0.66 [0.47;0.93] P=0.017
Deaths at Interim Efficacy Analyses

<table>
<thead>
<tr>
<th></th>
<th>AC-T</th>
<th>AC-TH</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=1,073</td>
<td>36 / 80</td>
<td>20 / 49</td>
<td>28 / 56</td>
</tr>
<tr>
<td>Total number of deaths from any cause</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 1st interim analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 2nd interim analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p=0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p=0.017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p=0.58</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Breast Cancer Deaths

<table>
<thead>
<tr>
<th></th>
<th>AC-T</th>
<th>AC-TH</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=1,073</td>
<td>33 / 69</td>
<td>19 / 44</td>
<td>21 / 47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DFS Lymph Node Negative

2nd Interim Analysis

% Disease Free

Patients Events

309 35 AC->T
310 12 AC->TH
309 17 TCH

HR (AC->TH vs AC->T) = 0.32 [0.17;0.62] P=0.0007
HR (TCH vs AC->T) = 0.47 [0.26;0.83] P=0.0096
Overall Survival Lymph Node Negative

2nd Interim Analysis

Patients Events

- 307 12 AC->T
- 309 2 AC->TH
- 307 5 TCH

HR (AC->TH vs AC->T) = 0.16 [0.04;0.73] P=0.018
HR (TCH vs AC->T) = 0.42 [0.15;1.2] P=0.106

Year from randomization

BCIRG 006
Slamon D., SABCS 2006
DFS Subpopulations

AC-TH vs AC-T

Subgroup
- Node neg
- Node pos
- HR -
- HR +
- Tsize<2cm
- Tsize=2cm

AC-TH better
AC-T better

TCH vs AC-T

Subgroup
- Node neg
- Node pos
- HR -
- HR +
- Tsize<2cm
- Tsize=2cm

TCH better
AC-T better
Overall Survival Subpopulations

AC-TH vs AC-T

- **Subgroup**
 - Node neg
 - Node pos
 - HR -
 - HR +
 - Tsize<2cm
 - Tsize=2cm

TCH vs AC-T

- **Subgroup**
 - Node neg
 - Node pos
 - HR -
 - HR +
 - Tsize<2cm
 - Tsize=2cm
Safety Results
Grade 3/4 Non-Hematological toxicity

<table>
<thead>
<tr>
<th>Condition</th>
<th>AC-T n=1,050</th>
<th>AC-TH n=1,068</th>
<th>TCH n=1,056</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthralgia</td>
<td>3.2%</td>
<td>3.3%</td>
<td>1.4%*</td>
</tr>
<tr>
<td>Myalgia</td>
<td>5.2%</td>
<td>5.2%</td>
<td>1.8%*</td>
</tr>
<tr>
<td>Fatigue</td>
<td>7.0%</td>
<td>7.3%</td>
<td>7.2%</td>
</tr>
<tr>
<td>Hand-foot syndrome</td>
<td>1.9%</td>
<td>1.4%</td>
<td>0.0%*</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>3.6%</td>
<td>3.1%</td>
<td>1.4%*</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>3.0%</td>
<td>5.7%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Nausea</td>
<td>6.0%</td>
<td>5.7%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>6.1%</td>
<td>6.8%</td>
<td>3.4%*</td>
</tr>
<tr>
<td>Irregular menses</td>
<td>27.1%</td>
<td>24.2%</td>
<td>26.4%</td>
</tr>
</tbody>
</table>

*Yellow = numerically less events AC-TH or TCH

*Statistically significant AC-TH or TCH
Specific non-hematological toxicity (all grades)

<table>
<thead>
<tr>
<th></th>
<th>AC-T n=1,050 %</th>
<th>AC-TH n=1,068 %</th>
<th>TCH n=1,056 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuropathy-sensory</td>
<td>48.3</td>
<td>49.7</td>
<td>36.1*</td>
</tr>
<tr>
<td>Neuropathy-motor</td>
<td>5.2</td>
<td>6.3</td>
<td>4.2*</td>
</tr>
<tr>
<td>Nail changes</td>
<td>49.2</td>
<td>43.6</td>
<td>28.7*</td>
</tr>
<tr>
<td>Myalgia</td>
<td>52.8</td>
<td>55.5</td>
<td>38.6*</td>
</tr>
<tr>
<td>Renal failure</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Creatinine Grade 3/4</td>
<td>0.6</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Yellow = numerically less events AC-TH or TCH
*Statistically significant AC-TH or TCH
Grade 3/4 Hematological Toxicity

<table>
<thead>
<tr>
<th>Condition</th>
<th>AC-T n=1,050</th>
<th>AC-TH n=1,068</th>
<th>TCH n=1,056</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutropenia</td>
<td>63.3%</td>
<td>71.3%</td>
<td>66.2%*</td>
</tr>
<tr>
<td>Leucopenia</td>
<td>51.5%</td>
<td>60.2%</td>
<td>48.2%*</td>
</tr>
<tr>
<td>Febrile neutropenia</td>
<td>9.1%</td>
<td>11.0%</td>
<td>9.8%</td>
</tr>
<tr>
<td>Neutropenic infection</td>
<td>11.3%</td>
<td>12.0%</td>
<td>11.0%</td>
</tr>
<tr>
<td>Anemia</td>
<td>2.5%</td>
<td>3.1%*</td>
<td>5.8%</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>1.0%</td>
<td>1.2%*</td>
<td>5.4%</td>
</tr>
<tr>
<td>Leukemia (%)</td>
<td>3 pts (0.3)</td>
<td>1 pt (0.1)</td>
<td>0 pts</td>
</tr>
</tbody>
</table>

Yellow = numerically less events AC-TH or TCH

*Statistically significant AC-TH or TCH
CARDIAC TOXICITY
Cardiovascular risk factors

<table>
<thead>
<tr>
<th>Risk factors (# of Pts)</th>
<th>AC-T n=1,073</th>
<th>AC-TH n=1,074</th>
<th>TCH n=1,075</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>38</td>
<td>36</td>
<td>28</td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>54</td>
<td>47</td>
<td>43</td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>20</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Obesity (BMI ≥ 30)</td>
<td>214</td>
<td>242</td>
<td>234</td>
</tr>
<tr>
<td>Hypertension</td>
<td>177</td>
<td>177</td>
<td>190</td>
</tr>
<tr>
<td>Radiotherapy (# of Pts)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After chemotherapy</td>
<td>662</td>
<td>656</td>
<td>671</td>
</tr>
<tr>
<td>To left chest</td>
<td>346</td>
<td>320</td>
<td>333</td>
</tr>
<tr>
<td>Randomized (n=3,222)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>49 yrs</td>
<td>49 yrs</td>
<td>49 yrs</td>
</tr>
<tr>
<td>Range</td>
<td>(23 - 74 yrs)</td>
<td>(22 - 74 yrs)</td>
<td>(23 - 73 yrs)</td>
</tr>
</tbody>
</table>
Cardiac Deaths and CHF
as per Independent Review Panel

<table>
<thead>
<tr>
<th></th>
<th>AC-T n=1,050</th>
<th>AC-TH n=1,068</th>
<th>TCH n=1,056</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac related death</td>
<td>0 / 0</td>
<td>0 / 0</td>
<td>0 / 0</td>
</tr>
<tr>
<td>Cardiac left ventricular function (CHF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 3 / 4</td>
<td>3 / 4</td>
<td>17 / 20</td>
<td>4 / 4</td>
</tr>
</tbody>
</table>

P = 0.0015

first interim analysis

second interim analysis

BCIRG 006
Slamon D., SABCS 2006
Patients with >10% relative LVEF decline

<table>
<thead>
<tr>
<th></th>
<th>AC-T</th>
<th>AC-TH</th>
<th>TCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>91/102</td>
<td>180/189</td>
<td>82/89</td>
</tr>
<tr>
<td>n</td>
<td>1012/1014</td>
<td>1040/1042</td>
<td>1029/1030</td>
</tr>
<tr>
<td>%</td>
<td>9/10</td>
<td>17.3/18</td>
<td>8/8.6</td>
</tr>
</tbody>
</table>

First interim analysis

\[P = 0.002 \quad P < 0.0001 \quad P < 0.0001 \quad P < 0.0001 \]

Second interim analysis

\[P = 0.5 \quad P = 0.5 \]
Mean LVEF - All Observations
1st Interim Analysis

Days

LVEF

AC->T (N=1012)
AC->TH (N=1040)
TCH (N=1029)

BCIRG 006
Slamon D., SABCS 2006
Mean LVEF - All Observations

2nd Interim Analysis

LVEF points %

Time since randomization (days)

AC→T (N=1014)
AC→TH (N=1042)
TCH (N=1030)

BCIRG 006
Slamon D., SABCS 2006
HER2 and TOPO II in BCIRG 006

2120 of 3222 patients analyzed

2990 of 3222 patients analyzed

<table>
<thead>
<tr>
<th>Region</th>
<th>Analysis 1</th>
<th>Analysis 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 q 12</td>
<td>N=2120</td>
<td>N=2990</td>
</tr>
<tr>
<td>HER2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core region</td>
<td>1285 pts (60%)</td>
<td>1788 pts (60%)</td>
</tr>
<tr>
<td></td>
<td>91 pts (4%)</td>
<td>145 pts (5%)</td>
</tr>
<tr>
<td>TOPO II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>region</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>744 pts (35%)</td>
<td>1057 pts (35%)</td>
</tr>
</tbody>
</table>

Topo II

- Non
- Co-Amplified

First interim analysis

Second interim analysis

Normal **Amplified** **Deletion**
TOPO IIa (not HER2) Amplification as a Predictor of Anthracycline Response in Breast Cancer

Since 2002, at least 6 studies have been published demonstrating the association between topo II alpha amplification and improved anthracycline response.

<table>
<thead>
<tr>
<th>Study</th>
<th>Yr</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park et al.</td>
<td>2006</td>
<td>284</td>
</tr>
<tr>
<td>Tanner et al.</td>
<td>2006</td>
<td>525</td>
</tr>
<tr>
<td>Knoop et al.</td>
<td>2005</td>
<td>805</td>
</tr>
<tr>
<td>Park et al.</td>
<td>2003</td>
<td>188</td>
</tr>
<tr>
<td>Coon et al.</td>
<td>2002</td>
<td>35</td>
</tr>
<tr>
<td>Di Leo et al.</td>
<td>2002</td>
<td>354</td>
</tr>
</tbody>
</table>
DFS Topo II Co-Amplified vs Non Co-Amplified All Patients (1st interim analysis)

Patients	Events	Topo II	Logrank P<0.001
744 | 57 | Co-Amplified |
1376 | 191 | Non Co-amplified |

Year from randomization
DFS Topo II Co-Amplified vs Non Co-Amplified
All Patients (2nd interim analysis)

- Co-Amplified:
 - 1044 patients
 - 119 events
 - 94% at year 1
 - 88% at year 2
 - 82% at year 3
 - 78% at year 4

- Non Co-amplified:
 - 1904 patients
 - 325 events
 - 88% at year 1
 - 84% at year 2
 - 88% at year 3
 - 84% at year 4

HR (Co-Amp vs Non Co-Amp) = 1.44 [1.16;1.78] P<0.001
DFS Co-Amplified Topo II by Arm
(1st Interim Analysis)

% Disease Free

Year from randomization

Patients Events

<table>
<thead>
<tr>
<th>Arm</th>
<th>Patients</th>
<th>Events</th>
<th>Logrank P</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC->T</td>
<td>227</td>
<td>23</td>
<td>0.24</td>
</tr>
<tr>
<td>AC->TH</td>
<td>265</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>TCH</td>
<td>252</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

Logrank P = 0.24
DFS Co-Amplified Topo II by Arm
(2nd Interim Analysis)

Year from randomization

Patients: 328
Events: 42
AC->T

Patients: 357
Events: 35
AC->TH
P=0.336

Patients: 359
Events: 42
TCH
P=0.648

P=0.336
P=0.648
DFS Non Co-Amplified Topo II by Arm
(1st Interim Analysis)

% Disease Free

Year from randomization

Patients

Events

AC->T

458

92

AC->TH

472

45

TCH

446

54

Logrank P= <0.001

BCIRG 006
Slamon D., SABCS 2006
DFS Non Co-Amplified Topo II by Arm
(2nd Interim Analysis)

% Disease Free

Year from randomization

Patients Events

- 643 146 AC->T
- 643 87 AC->TH P<0.001
- 618 92 TCH P<0.001

BCIRG 006
Slamon D., SABCS 2006
Therapeutic Index – Most Recent Data

→ Difference in DFS, OS and BC death events (ITT) between the 2 Herceptin-containing arms
 ✓ DFS AC-TH - 128 TCH – 142
 ✓ OS AC-TH - 49 TCH – 56
 ✓ Br Ca Deaths AC-TH - 44 TCH – 47

→ Difference in critical adverse events between anthracycline and non-anthracycline containing arms
 ✓ Grade 3/4 CHF
 • AC-T - 5 AC-TH - 20 TCH - 4
 ✓ Leukemia
 • Anthracycline-Based Arms - 4 TCH – 0

→ Global safety TCH > AC-TH

→ In addition, 23 pts with bona fide HER2 amplification who were randomized to the AC-TH arm never got trastuzumab due to unacceptable declines in LVEF before receiving the antibody
Critical Question

✓ Considering:

✓ The recently published data from US Oncology showing a highly statistically significant superiority of docetaxel-cyclophosphamide (TC) over adriamycin-cyclophosphamide (AC) in terms of breast cancer efficacy (Jones, S. JCO 24:5381, 2006).

✓ The 006 update for HER2 positive malignancies shows the difference in number of DFS events and breast cancer deaths in favor of AC-TH, neither of which are statistically significant, is now exceeded by the number of critical adverse events. These include grade III/IV CHF and AC-related leukemia as well as a small AND sustained loss of LVEF for 18% (189 pts) both of which are highly statistically significant...

What is the role of anthracyclines in the adjuvant treatment of breast cancer?
Acknowledgements

- All participating Investigators and Patients
- IDMC (Chair, S Swain) and Independent Cardiac Panel
- Central laboratories:
 - M Press (USC), G Sauter (Basel)
- IDDI: M. Buyse
- NBCC: Fran Visco and Carolina Hinestrosa
- BCIRG Central Team:
 - V Bee, D Cabaribere, T Kiskartalyi, T Smith, L Lallaoui, H Taupin, K Afenjar, P Drevot, L Andersen, H Fung, J Mortimer, A Riva, MA Lindsay
Principal Investigators involved in the study (I)

ARGENTINA
Fein
Giacomi
Martinez
Mickiewicz

AUSTRALIA/NZ
Abdbi
Begbie
Beith
Byard
Chan*
Chirgwin
Clingan
Craft
Dalley
Dewar
Ganju
Green
Grimes
Harvey
Isaacs
Jameson
Kannourakis
Koczwar
Kotasek
Lewis
Links
Ransom
Richardson

AUSTRIA
Dickrich
Sevelda

BELGIUM
Cocquyt
Demol
Dirix
Verhoeven
Vermorken

BOSNIA
Beslija

BRAZIL
Ferrari
Lago

BULGARIA
Beslija
Tzakova

CANADA
Dorreen
Dufresne
Klimo
Latreille

COLOMBIA
COLOMBIA

CROATIA
Grgic
Markulin-Grgic
Mrsic-Krmopotik

CYPRUS
Adamou

CZECH REPUBLIC
Petruzelka
Vyzula

EGYPT
Azim
El Khodary

ESTONIA
Padrik
Valvere

FRANCE
Achille
Bonneterre

GERMANY
Breitbach
Brunnert
Carstensen
Christensen
Clemens
Conrad
Dubois

GREECE
Georgoulias

HONG KONG
Chow

HUNGARY
Baki
Dank

IRELAND
Crown*
Grogan
Keane
Kennedy*
McCaffrey

ISRAEL
Barak
Ben Baruch
Geffen
Goldberg
Kaufman
Rizel
Steiner

ITALY
Barone
Bonetti
Gamucci
Gasparini
Geminiani
Iaffaioli
Marangolo
Nardi
Pollera
Ravaloli

LEBANON
Abi Gerges
Chahine
Ghosn
Saghir

Highest recruiters
BCIRG 006
Slamon D., SABCS 2006
Principal Investigators involved in the study (II)

<table>
<thead>
<tr>
<th>Poland</th>
<th>Spain</th>
<th>Turkey</th>
<th>France</th>
<th>Romania</th>
<th>Russia</th>
<th>South Korea</th>
<th>South Africa</th>
<th>South Africa</th>
<th>South Africa</th>
<th>South Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borowska</td>
<td>Adrover</td>
<td>Fesen</td>
<td>Goodman</td>
<td>Nair</td>
<td>Neel</td>
<td>Bang</td>
<td>Moodley</td>
<td>Pienarr</td>
<td>Sunil</td>
<td>Slabber</td>
</tr>
<tr>
<td>Karnicka</td>
<td>Alba Conejo</td>
<td>Goodman</td>
<td>Greenwald</td>
<td>Neuro</td>
<td>Nicholls</td>
<td>Cam</td>
<td>Beall</td>
<td>Rubinsky</td>
<td>Hopkin</td>
<td></td>
</tr>
<tr>
<td>Pawlicki*</td>
<td>Alonso Romero</td>
<td>Grosbach</td>
<td>Groshaus</td>
<td>Garin</td>
<td>Olopade</td>
<td>Chapman</td>
<td>Berdeaux</td>
<td>Paley</td>
<td>Slack</td>
<td></td>
</tr>
<tr>
<td>Pienkowski*</td>
<td>Alvarez</td>
<td>Hajdenberg</td>
<td>Houston</td>
<td>Gorbunova</td>
<td>Orlowski</td>
<td>De Jongh</td>
<td>Beattie</td>
<td>Chamberlain</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>Wojtukiewicz</td>
<td>Ales Martinez</td>
<td>Jhangiani</td>
<td>Page</td>
<td>Toledo</td>
<td>Osborn</td>
<td>Wallmark</td>
<td>Beattie</td>
<td>Kittler</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Zaluski</td>
<td>Aranda</td>
<td>Jones</td>
<td>Page</td>
<td>Taine</td>
<td>Paul</td>
<td>Sherrif</td>
<td>Beattie</td>
<td>Kittler</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Romania</td>
<td>Arcusa</td>
<td>Justice</td>
<td>Paton</td>
<td>Patel</td>
<td>Philip</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Badulescu</td>
<td>Baena Canada</td>
<td>Justice</td>
<td>Petruska</td>
<td>Rahman</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Ghilezan</td>
<td>Calvo Martinez</td>
<td>Kerr</td>
<td>Philip</td>
<td>Ringeneni</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Roman</td>
<td>Crespo</td>
<td>Kennedy</td>
<td>Philip</td>
<td>Reich</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>Dominguez</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Reiling</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Garin</td>
<td>Garcia Estevez</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Rinaldi</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Gorbunova</td>
<td>Florian Gerico</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff (network)</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Semiglazov</td>
<td>Jara</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Slovakia</td>
<td>Margeli</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Koza</td>
<td>Martin*</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Spanik</td>
<td>Martin Lorente</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Slovenia</td>
<td>Mel Lorenzo</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Cufer</td>
<td>Oltra Ferrando</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Takac</td>
<td>Pelegri</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>Sweden</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Moodley</td>
<td>Forner*</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Pienarr</td>
<td>Sweden</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Rapoport</td>
<td>Sweden</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Slabber</td>
<td>Sweden</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>South Korea</td>
<td>Sweden</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Bang</td>
<td>Sweden</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Im</td>
<td>Sweden</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Kim</td>
<td>Sweden</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
<tr>
<td>Ro</td>
<td>Sweden</td>
<td>Kerr</td>
<td>Polikoff</td>
<td>Robert (USO)*</td>
<td>Polikoff</td>
<td>Saito</td>
<td>Beattie</td>
<td>Knorr</td>
<td>Vernois</td>
<td></td>
</tr>
</tbody>
</table>

Highest recruiters